• 中国科技核心期刊
  • 中国科技论文统计源期刊

基于熵值法和突变级数法的泥石流易损度评价

王雪冬, 叶果, 李世宇, 张晓军, 李小龙

王雪冬, 叶果, 李世宇, 张晓军, 李小龙. 基于熵值法和突变级数法的泥石流易损度评价[J]. 地质与资源, 2019, 28(5): 493-496, 422.
引用本文: 王雪冬, 叶果, 李世宇, 张晓军, 李小龙. 基于熵值法和突变级数法的泥石流易损度评价[J]. 地质与资源, 2019, 28(5): 493-496, 422.
WANG Xue-dong, YE Guo, LI Shi-yu, ZHANG Xiao-jun, LI Xiao-long. VULNERABILITY ASSESSMENT OF DEBRIS FLOW BASED ON ENTROPY VALUE AND CATASTROPHE PROGRESSION METHODS[J]. Geology and Resources, 2019, 28(5): 493-496, 422.
Citation: WANG Xue-dong, YE Guo, LI Shi-yu, ZHANG Xiao-jun, LI Xiao-long. VULNERABILITY ASSESSMENT OF DEBRIS FLOW BASED ON ENTROPY VALUE AND CATASTROPHE PROGRESSION METHODS[J]. Geology and Resources, 2019, 28(5): 493-496, 422.

基于熵值法和突变级数法的泥石流易损度评价

基金项目: 

国家自然科学基金“基于降雨条件和堆积特征的内排土场泥石流启动规律研究”项目 51604140

中国博士后科学基金“降雨作用下矿山排土场浅层滑坡演化规律研究”项目 2018M631815

辽宁省自然科学基金“矿山排土场坡面降雨冲刷破坏机理研究”项目 20170540423

大学生创新创业训练计划“矿山排土场泥石流垂向流速分布研究”项目 201810147271

详细信息
    作者简介:

    王雪冬(1984-), 男, 讲师, 从事地质资源与地质工程专业教学与研究, 通信地址辽宁省阜新市中华路47号, E-mail//987817831@qq.com

  • 中图分类号: P694

VULNERABILITY ASSESSMENT OF DEBRIS FLOW BASED ON ENTROPY VALUE AND CATASTROPHE PROGRESSION METHODS

  • 摘要:

    泥石流易损度(危害性)评价是泥石流风险评估的重要组成部分.结合熵值法和突变理论的泥石流易损度评价方法,采用客观的熵值法判断指标间相对重要程度,利用突变级数法计算突变级数值进行评价,方法理论基础牢固且避免了确定指标权重值的弊端.以吉林省和龙市地质灾害调查与区划中的10条泥石流易损度评价实例进行验证,结果表明:数据获取、标准化和评价过程简便,易损度等级以轻度和中度为主的评价结果符合实际情况,该方法经过完善指标体系后可更加合理地应用于实际工作中.因此,基于熵值法和突变理论的泥石流易损度评价方法是可行的、可靠的.

    Abstract:

    Vulnerability(harmfulness) is an important part of debris flow risk assessment. Two methods are combined for the vulnerability assessment. The objective entropy value method is adopted to judge the relative importance of indexes; while the catastrophe progression to calculate its value. The well-grounded method theory can avoid the disadvantages of determining index weight value. Taking the vulnerability assessment examples of 10 debris flows in the geohazard surveying and zoning in Helong City, Jilin Province, for verification, the results show that the process of data acquisition, standardization and assessment is simple, and the mild and moderate-dominated vulnerability grades are consistent with the actual situation. The method can be more reasonably applied to practical work after improving the index system. Therefore, the combination of entropy value method and catastrophe theory is feasible and reliable for debris flow vulnerability assessment.

  • 泥石流易损度是指由泥石流灾害而可能导致一定区域和时间内的人、财、物的潜在最大损失[1].泥石流易损性评价是泥石流灾害风险评价的重要方面,也是泥石流防灾减灾的基础[2-4].目前综合评价方法有层次分析法、模糊综合评价法、功效系数法、神经网络分析法等众多方法,指标权重的确定往往是目标评价问题的核心,主客观赋权法均存在缺点,对评价结果产生影响[5-7].泥石流是一定地形地貌条件下的松散碎屑堆积物在暴雨等诱发因素作用时突发的现象,其暴发具有典型的突变特征,突变理论为解决这类问题提供了有效方法[8-9].突变理论涉及较深的数学基础,其中突变级数法以其理论简单得到了广泛应用,突变级数法应用于评价过程虽然无需给出指标因子的权重数值[10],但仍需要定性地判断出评价指标间的相对重要程度,可采用依据数据客观分析的熵值法进行改进[11].将熵值法改进后的突变级数法应用于吉林省和龙市泥石流易损度评价中,获得了新的泥石流易损度评价方法.

    突变理论被广泛应用于研究事物状态的突变过程中,将控制系统突变发生的因子称作控制变量[9],当控制变量数为2时,就构成了最常见的尖点型突变模型[12].下面简要介绍基于尖点型突变模型的突变级数综合评价法.

    尖点型突变模型的势函数为

    $$ F(x)=x^{4}+a x^{2}+b x $$ (1)

    式中x是状态变量;ab是控制变量.

    对(1)式求导数可得到临界曲面,平衡曲面M的方程为

    $$ F^{\prime}(x)=4 x^{3}+2 a x+b=0 $$ (2)

    对上式求导后可得到奇点集S

    $$ F^{\prime \prime}(x)=12 x^{2}+2 a=0 $$ (3)

    由(2)(3)式联立并消去x,得到分歧集B的方程为

    $$ 8 a^{3}+27 b^{2}=0 $$ (4)

    分歧集B的分解形式可表达式为

    $$ \left\{\begin{array}{l}{a=-6 x^{2}} \\ {b=8 x^{3}}\end{array}\right. $$ (5)

    图 1为平衡曲面M和分歧集B的空间图形,平衡曲面MOIOJ构成了奇点集S,它们在u-v平面上的投影OI′和OJ′构成了分歧集B.系统状态的变化表现有突变和渐变两种形式.当系统的状态沿着路径AYQ变化时,表现为渐变方式;当沿着路径APRQ变化时,跨过奇点集B,则系统状态变量x从上叶跨过中叶突越到下叶,系统状态则发生突变[9, 13].

    图  1  尖点型突变模型
    Figure  1.  Cusp catastrophe model

    尖点型突变级数法是根据尖点突变理论得到的综合评价方法[14],原理是把综合评价目标分解,根据模糊数学及尖点突变理论获得突变模糊隶属函数,再由尖点模型的分歧集方程得出归一化公式并计算出突变级数值用于评价.优缺点同时体现在指标权重上,其应用时只需定性地给出指标因子间的相对重要程度[15-16].为了避免主观判断的误差,采用依据数据本身判断的熵值法进行改进,其原理是分析各指标的变异程度,利用各指标因子的信息熵值来判断相对重要程度.

    m个样本,n项指标因子组成的综合评价集数据进行无量纲化和归一化处理,获得可用于评价的源数据集Rij.根据处理后的数据可求得第j项指标因子的权重值为$ {w_j} = \left( {1 - {{\rm{e}}_j}} \right)/\sum\limits_{j = 1}^n {{{\rm{e}}_j}} $.式中,${{\rm{e}}_j} = \sum\limits_{i = 1}^m {{t_{ij}}} \ln {t_{ij}}/\ln m $即为第j项指标因子的信息熵,${t_{ij}} = {r_{ij}}/\sum\limits_{i = 1}^m {{r_{ij}}} $为第j个样本第i项指标因子的比重,rij为源数据集Rij中第j项指标因子的第i个样本.信息熵值与指标因子的相对重要程度呈反比关系[17-18],因此,可利用计算获得的信息熵值判断出指标因子间的重要程度.

    将影响易损度的各项指标作为控制变量,建立起泥石流的势函数,应用熵值法改进突变级数法来评价泥石流的易损度特征.根据泥石流易损度评价选取合适的评价指标,建立目标评价系统[19].为了达到取值范围统一,需要将各个控制变量标准化后控制在0~1的区间内,一般可利用(6)式进行指标的归一化.

    $$ \left\{\begin{array}{l}{x_{a}=\sqrt{a}} \\ {x_{b}=\sqrt[3]{b}}\end{array}\right. $$ (6)

    由(6)式可知,归一化过程中的控制变量对评价目标的控制作用有主次之分,这种控制作用的大小可由熵值法依据数据本身进行客观判断.因此,根据上述建立的改进层次结构模型,即可求得突变级数值后进行易损度的综合评价.显然,当控制变量都对评价目标产生正效应作用时,采取互补原则,即取突变级数的平均值[9].

    和龙市地处吉林省东部的长白山区,地质环境质量较差,以泥石流、崩塌、滑坡为主的地质灾害常有发生.泥石流、滑坡等地质灾害潜在危险较严重,已发现泥石流隐患点69处,一旦泥石流暴发,会造成当地人民生命财产的损失,因此,开展泥石流易损度的有效评价是十分必要的.

    泥石流的易损度评价指标通常可以概括为社会危害度、物质危害度、环境危害度和经济危害度4类[1].为实现灾害的评估与防灾减灾的快速响应,将社会危害度用威胁人口的指标表达,后三者则可以估算成财产的货币量形式,以威胁经济财产的多少表达[20].简化后易损度评价因子分为财产指标和人口指标两大类,可通过前期的地质灾害调查工作获取具体数值.

    以和龙市地质灾害调查与区划资料为基础,威胁人口指标以单沟泥石流威胁的实际人数来表达,威胁经济财产指标以泥石流所威胁的物质指标、环境指标和财产指标转化成的货币量之和来表达,其中道路、耕地、房屋等均按当地实际物价水平进行估算取值,这样泥石流易损度评价的尖点型突变模型如图 2所示,得到的指标赋值情况如表 1所示.

    图  2  泥石流易损度评价模型
    Figure  2.  Vulnerability assessment model of debris flow
    表  1  选取泥石流沟调查情况统计表
    Table  1.  Survey statistics for the selected debris flow gullies
    泥石流沟编号 受威胁人口/人 威胁财产/万元
    N1 8 30
    N2 70 551
    N3 6 60
    N4 42 482
    N5 10 59
    N6 9 54
    N7 30 270
    N8 11 51
    N9 18 170
    N10 5 44
    下载: 导出CSV 
    | 显示表格

    由于模型中指标因子的意义不同,在利用(6)式归一化公式计算泥石流易损度的突变级数值前,需按(7)式进行指标因子的标准化处理.

    $$ x_{i}^{\prime}=\frac{x_{i}-x_{\min }}{x_{\max }-x_{\min }} $$ (7)

    式中xmaxxmin分别为指标因子的最大值和最小值.

    结合熵值法和表 1数据,计算出威胁人口和威胁经济财产指标的信息熵值分别为0.838和0.793,由此可得出威胁经济财产评价指标相对重要程序.

    判断单沟泥石流的易损度等级还需确定每个评价等级标准的突变级数值,可根据单个指标的泥石流易损度等级划分的标准值得出.依据我国《滑坡崩塌泥石流灾害调查规范(1: 50000)》并参考相关文献[21],将泥石流易损度划分为轻度危害、中度危害、高度危害和极度危害4个等级(表 2).

    表  2  泥石流易损度评价等级划分标准
    Table  2.  Grading standards of debris flow vulnerability assessment
    评价指标 轻度危害 中度危害 高度危害 极度危害
    受威胁人口/人 0~10 10~100 100~1000 1000~2000
    威胁财产/万元 0~100 100~500 500~1000 1000~2000
    下载: 导出CSV 
    | 显示表格

    表 2中单指标泥石流易损度评价等级阈值应用到改进的突变级数法中,可获得基于熵值法和尖点型突变级数法的泥石流易损度评价标准(表 3).泥石流易损度突变级数值越大,泥石流的危害性就越高.

    表  3  泥石流易损度评价等级标准
    Table  3.  Grades of debris flow vulnerability assessment
    评价等级 轻度危害 中度危害 高度危害 极度危害
    突变级数 0~0.197 0.197~0.434 0.434~0.750 0.750~1
    下载: 导出CSV 
    | 显示表格

    利用尖点型突变模型的归一化公式计算各泥石流易损度的突变级数.模型中威胁人口和威胁经济财产的两个指标对泥石流危害程度的作用是正向的,所以采用公式(6)进行指标因子的归一化运算时需采用互补原则,计算结果见表 4.

    表  4  泥石流易损度评价结果
    Table  4.  Results of debris flow vulnerability assessment
    泥石流沟编号 标准化处理 突变级数值 评价结果
    受威胁人口 威胁财产
    N1 0.004 0.015 0.141 轻度
    N2 0.035 0.276 0.426 中度
    N3 0.003 0.030 0.159 轻度
    N4 0.021 0.241 0.383 中度
    N5 0.005 0.029 0.171 轻度
    N6 0.005 0.027 0.168 轻度
    N7 0.015 0.135 0.307 中度
    N8 0.006 0.026 0.171 轻度
    N9 0.009 0.085 0.250 中度
    N10 0.003 0.022 0.146 轻度
    下载: 导出CSV 
    | 显示表格

    结合泥石流易损度的突变级数等级划分标准和计算得到选取的泥石流沟突变级数值可以看出,和龙市泥石流的易损度等级以轻度和中度为主,说明整体上泥石流的危害较小,这与调查得到的该区泥石流规模小、危害性小的结论相符.同时,也存在威胁数十人和上百万财产安全的潜在单沟泥石流,若未采取群测群防等地质灾害的有效预防措施,仍可能造成十分严重的灾害损失.因此,泥石流易损度的评价结果可为防灾减灾工作提供理论和实践指导.

    1)依据数据本身判断指标因子重要性的熵值法进行改进突变级数综合评价法,并将其应用于泥石流易损度综合评价中,避免了权重值确定的弊端,保证了综合评价结果的客观.

    2)应用评价结果与调查得到的实际结论相符,改进型突变级数综合评价法可用于泥石流灾害的风险评估工作,也能为灾害的有效防治提供指导.

    3)概化后的泥石流易损度评价指标简单且易于赋值,能够实现泥石流易损度的快速评价.但易损度评价涉及指标较多,将来可选取更加合理的指标体系用于实际评价工作,可为更加科学、合理地开展泥石流易损度评价提供依据.因此,基于熵值法和突变理论的泥石流易损度评价是可行的、可靠的.

    编辑:张哲
  • 图  1   尖点型突变模型

    Figure  1.   Cusp catastrophe model

    图  2   泥石流易损度评价模型

    Figure  2.   Vulnerability assessment model of debris flow

    表  1   选取泥石流沟调查情况统计表

    Table  1   Survey statistics for the selected debris flow gullies

    泥石流沟编号 受威胁人口/人 威胁财产/万元
    N1 8 30
    N2 70 551
    N3 6 60
    N4 42 482
    N5 10 59
    N6 9 54
    N7 30 270
    N8 11 51
    N9 18 170
    N10 5 44
    下载: 导出CSV

    表  2   泥石流易损度评价等级划分标准

    Table  2   Grading standards of debris flow vulnerability assessment

    评价指标 轻度危害 中度危害 高度危害 极度危害
    受威胁人口/人 0~10 10~100 100~1000 1000~2000
    威胁财产/万元 0~100 100~500 500~1000 1000~2000
    下载: 导出CSV

    表  3   泥石流易损度评价等级标准

    Table  3   Grades of debris flow vulnerability assessment

    评价等级 轻度危害 中度危害 高度危害 极度危害
    突变级数 0~0.197 0.197~0.434 0.434~0.750 0.750~1
    下载: 导出CSV

    表  4   泥石流易损度评价结果

    Table  4   Results of debris flow vulnerability assessment

    泥石流沟编号 标准化处理 突变级数值 评价结果
    受威胁人口 威胁财产
    N1 0.004 0.015 0.141 轻度
    N2 0.035 0.276 0.426 中度
    N3 0.003 0.030 0.159 轻度
    N4 0.021 0.241 0.383 中度
    N5 0.005 0.029 0.171 轻度
    N6 0.005 0.027 0.168 轻度
    N7 0.015 0.135 0.307 中度
    N8 0.006 0.026 0.171 轻度
    N9 0.009 0.085 0.250 中度
    N10 0.003 0.022 0.146 轻度
    下载: 导出CSV
  • [1] 刘希林, 莫多闻.泥石流易损度评价[J].地理研究, 2002, 21(5):569-577. doi: 10.3321/j.issn:1000-0585.2002.05.005
    [2]

    CUI Peng, XIANG Ling-zhi, ZOU Qiang. Risk assessment of highways affected by debris flows in Wenchuan earthquake area[J]. Journal of Mountain Science, 2013, 10(2):173-189. doi: 10.1007/s11629-013-2575-y

    [3]

    HAN Yong-shun, LIU Hong-jiang, ZHONG Dun-lun, et al. GIS-based risk assessment of debris flow disasters in the upper reach of Yangtze river[J]. Wuhan University Journal of Natural Sciences, 2007, 12(4):657-662. doi: 10.1007/s11859-006-0352-2

    [4] 刘希林, 尚志海.泥石流灾害综合风险分析方法及其应用[J].地理与地理信息科学, 2012, 28(5):86-88. http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201205019
    [5] 唐波, 刘希林, 尚志海.城市灾害易损性及其评价指标[J].灾害学, 2012, 27(4):6-11. doi: 10.3969/j.issn.1000-811X.2012.04.002
    [6] 倪晓娇, 南颖, 朱卫红, 等.基于多灾种自然灾害风险的长白山地区生态安全综合评价[J].地理研究, 2014, 33(7):1348-1360. http://d.old.wanfangdata.com.cn/Periodical/dlyj201407014
    [7] 王雪冬, 李广杰, 孟凡奇, 等.基于改进型拉开档次法的泥石流危险度评价实例[J].吉林大学学报:地球科学版, 2012, 42(6):1853-1858.
    [8] 凌复华.突变理论及其应用[M].上海:上海交通大学出版社, 1987:2-3.
    [9] 徐黎明.基于突变理论的乌东德水电站近坝区泥石流风险评价与防治研究[D].长春: 吉林大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013193238.htm
    [10] 周容义, 黎忠文, 牛会永.基于突变理论的油库火灾爆炸分析与模糊动态评价[J].中国安全科学学报, 2006, 16(6):97-101. doi: 10.3969/j.issn.1003-3033.2006.06.018
    [11] 王雪冬, 李世宇, 孙延锋, 等.基于熵值法和突变理论的矿山环境质量评价[J].煤炭科学技术, 2018, 46(S1):264-267. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SXDH201709001024.htm
    [12]

    Lee S, Chwae U, Min K D. Landslide susceptibility mapping by correlation between topography and geological structure in the Janghung area, Korea[J]. Geomorphology, 2002, 46(3/4):149-162. https://www.onacademic.com/detail/journal_1000035493462810_e6bb.html

    [13] 曹伟, 盛煜, 齐吉琳.基于突变级数法的青海木里矿区冻土环境评价[J].煤炭学报, 2008, 33(8):881-886. doi: 10.3321/j.issn:0253-9993.2008.08.009
    [14] 李军霞.西藏隆子县滑坡灾害形成机理及非线性预测研究[D].长春: 吉林大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10183-1011105951.htm
    [15] 陈娇, 罗周全, 侯造水.基于改进突变级数法的金属矿采空区稳定性评价[J].中国安全生产科学技术, 2013, 9(11):17-24. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201311003
    [16] 安景文, 安娴, 王龙康.基于突变级数法的企业应急动态能力评价研究[J].中国安全生产科学技术, 2017, 13(1):109-114. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201701026
    [17] 张立新, 张艳.基于改进突变级数法的农村人力资源能力评价研究[J].大连理工大学学报:社会科学版, 2016, 37(1):70-76. http://d.old.wanfangdata.com.cn/Periodical/dllgdxxb-shkxb201601012
    [18] 郑德凤, 臧正, 王平富.改进的突变模型及其在水资源评价中的应用[J].水利水电科技进展, 2014, 34(4):45-52. http://d.old.wanfangdata.com.cn/Periodical/slsdkjjz201404011
    [19] 王富强, 刘中培, 杨松林.基于突变理论的灌区水资源开发利用状况综合评价[J].中国农村水利水电, 2011(12):19-25. http://www.cnki.com.cn/Article/CJFDTotal-ZNSD201112007.htm
    [20] 唐川, 张军, 周春花, 等.城市泥石流易损性评价[J].灾害学, 2005, 20(2):11-17. doi: 10.3969/j.issn.1000-811X.2005.02.003
    [21]

    LIU Xi-lin. Site-specific vulnerability assessment for debris flows:Two case studies[J]. Journal of Mountain Science, 2006, 13(1):20-27. http://www.cqvip.com/QK/87799X/200601/21482521.html

图(2)  /  表(4)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  1
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-17
  • 修回日期:  2019-04-02
  • 网络出版日期:  2022-12-28
  • 发布日期:  2019-10-30
  • 刊出日期:  2019-10-30

目录

/

返回文章
返回